A reverse coarea-type inequality in Carnot groups
نویسندگان
چکیده
We prove a coarea-type inequality for continuously Pansu differentiable function acting between two Carnot groups endowed with homogeneous distances. assume that the level sets of are uniformly lower Ahlfors regular and differential is everywhere surjective.
منابع مشابه
Isodiametric Inequality in Carnot Groups
The classical isodiametric inequality in the Euclidean space says that balls maximize the volume among all sets with a given diameter. We consider in this paper the case of Carnot groups. We prove that for any Carnot group equipped with a Haar measure one can find a homogeneous distance for which this fails to hold. We also consider Carnot-Carathéodory distances and prove that this also fails f...
متن کاملOn a New Reverse Hilbert\'s Type Inequality
In this paper, by using the Euler-Maclaurin expansion for the Riemann-$zeta$ function, we establish an inequality of a weight coefficient. Using this inequality, we derive a new reverse Hilbert's type inequality. As an applications, an equivalent form is obtained.
متن کاملHardy-Littlewood Inequality for Quasiregular Maps on Carnot Groups
A natural generalization of analytic functions to n-dimensional Euclidean space are quasiregular mappings.(See [2] and [3].) An analogue of Theorem 1.1 for quasiregular mappings in John domains in Euclidean space appeared in [4]. Recently the analytical tools used in the proof of this result have been generalized to Carnot groups. We give an account of some of these advances and obtain an analo...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولChaotic Geodesics in Carnot Groups
Graded nilpotent Lie groups, or Carnot Groups are to subRiemannian geometry as Euclidean spaces are to Riemannian geometry. They are the metric tangent cones for this geometry. Hoping that the analogy between subRiemannian and Riemannian geometry is a strong one, one might conjecture that the subRiemannian geodesic flow on any Carnot group is completely integrable. We prove this conjecture is f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Fourier
سال: 2022
ISSN: ['0373-0956', '1777-5310']
DOI: https://doi.org/10.5802/aif.3474